Rising Geometry Summer Math

Please write your thinking on a separate sheet of paper and turn it in to your teacher this fall.

1. Solve for t and simplify your answer.

Name: ___

$$\frac{3}{5}t = 11$$

2. Solve for x and simplify your answer.

$$4=-rac{5}{4}x$$

4. Solve for t and simplify your answer.

$$rac{5}{6}t=8$$

5. Solve for *s* and simplify your answer.

$$-3=rac{5}{2}s$$

6. Solve for y.

$$-10 = rac{y}{11} - 13$$

3. Solve for y and simplify your answer.

$$-11=rac{2}{3}y$$

7. Solve for z.

-18 + 5z = 37

11. Solve for *z*.

 $-3=-11-rac{y}{11}$

-3 = -1.6z - 2.2

8. Solve for
$$a$$
.

$$30=26-rac{a}{6}$$

9. Solve for *b*.

$$-7b - 12 = -61$$

12. Solve for *b*.

$$-rac{b}{0.4}+3.4=6.4$$

13. Solve for a.

$$-0.1a - 1.8 = -2.11$$

15. Solve for y.

$$3.9 = -rac{y}{0.5} + 2.9$$

16. Solve for y.

$$-8=-14+rac{1}{12}y$$

14. Solve for *a*.

$$2.8 - 0.2a = 3.16$$

17. Solve for *x*.

$$\frac{1}{11}x+1=3$$

18. Solve for *z*.

$$\frac{1}{12}z+9=14$$

21. Solve.
$$4(x-7) = 0$$

19. Solve for *c*.

$$56 = 16 + rac{5}{12}c$$

22. Solve. 4(y-1) = 0

20. Solve for *a*.

$$5+rac{7}{8}a=82$$

23. Solve. 2(z-9) = 0

24. Solve. 5(y+4) = 30**27.** Solve for x in simplest form. $11=rac{7}{2}(5x+4)$ 25. Solve. 6(z+2) = 48**28.** Solve for x in simplest form. $1=\frac{5}{2}(7x+6)$ **26.** Solve for x in simplest form.

$$14=\frac{1}{2}(3x-6)$$

29. Solve for x in simplest form.

$$10=rac{4}{3}(8x+12)$$

31. Solve for *x*:

$$-3.5 - 6.5(x+1) = 1 - (7x+1.6)$$

30. Solve for x in simplest form.

$$12=rac{3}{4}(3x+8)$$

32. Solve for *x*:

$$x = -6 + 0.5(-0.8x + 9) + 2x$$

$$6.4 = -(-x + 0.8) - 10x$$

$$9.1 = 4(2x - 3.3) + 9.9$$

34. Solve for *x*:

$$-0.6 - (8x - 1) = -7(x + 3.4)$$

36. Combine like terms.

 $-7y^2 + 6x^3 + 3y^2 - 4x^3 - 6 - 2 - 2$

37. Combine like terms.

$$6 + 2 + 2x + 6y + 2y + 1 + 2x$$

40. Combine like terms.

$$3 - 3 + x^3 + 6x^3 - 3y - 3 - 4x^3$$

38. Combine like terms.

 $x - 3y^3 + 3x^3 - 5x - x^3 - x - 2x^3$

41. Combine like terms.

 $-4 - 6x^3 + 3y^2 + 3 + 2 - x^3 - 5y^2$

39. Combine like terms.

-

$$-2y^3 + 3y - 3y + 7y^3 + 1 + 2 - 5$$

42. Combine like terms.

$$-7y - 6y^3 + 2y + 4y^3 - 5 - 1 - 2y^3$$

 $-3 - 3 - 2y + 6y^3 - 7y^3 + 6y + 2$

46. Distribute 2x(1+4x).

47. Distribute 3(5-6x) .

44. Combine like terms.

 $-4x^3 - 6y^3 + y^3 - 3 + x^3 + x^3 + 4y^3$

48. Distribute $2x\left(2-3x
ight)$.

49. Distribute 3x(2x+2) .

45. Combine like terms.

 $y^3 - y^2 + 4y^3 + 7y^2 - 3x^3 + y^2 + 4y^3$

50. Distribute $3\left(1-2x^2
ight)$.

54. Identify the greatest common factor of 40 and $20az$.
55. Identify the greatest common factor of 20 and $40wx$.
56. Use multiplication to fully expand the expression below. $x^3y^6z^2$

57. Use exponents to condense the expression below.

$x \cdot x \cdot x \cdot y \cdot y \cdot y \cdot y \cdot y \cdot z \cdot z$

58. Use an exponent to condense the expression below.

 $y \cdot y$

59. Use multiplication to fully expand the expression below.

 $(xyz)^2$

61. Simplify: $x^5 \cdot x^6$

62. Simplify: $(k^3)^6$

63. Simplify: $(x^2)^6$

64. Simplify: $x \cdot x^3$

60. Use multiplication to fully expand the expression below.

 x^6y^4z

65. Simplify: $\left(m^6\right)^2$

68. Plot the point (-3, 0).

67. Plot the point (2, 2).

69. Plot the point (-3, 1).

72. A battleship is located on the grid below. List the coordinates of all points covered by the battleship.

71. A battleship is located on the grid below. List the coordinates of all points covered by the battleship.

73. A battleship is located on the grid below. List the coordinates of all points covered by the battleship.

74. A battleship is located on the grid below. List the coordinates of all points covered by the battleship.

75. A battleship is located on the grid below. List the coordinates of all points covered by the battleship.

76. Find the slope of the line represented by the equation below.

$$y=1-rac{3}{2}x$$
 .

77. Find the y-intercept of the line represented by the equation below.

$$y = 4 + \frac{3}{5}x$$

78. Find the slope of the line represented by the equation below.

$$-2x = y$$

80. Find the slope of the line represented by the equation below.

$$-rac{2}{3}x+5=y$$

79. Find the y-intercept of the line represented by the equation below.

$$y = -1 + rac{5}{3}x$$

81. Convert $2\frac{1}{3}$ into an improper fraction.

82. Convert $\frac{23}{3}$ into a mixed number.

83. Convert $1\frac{3}{5}$ into an improper fraction.	87. Perform the operation and simplify the answer fully. $\frac{5}{9} \cdot \frac{2}{7}$
84. Convert $\frac{52}{7}$ into a mixed number.	
	88. Perform the operation and simplify the answer fully. $\frac{5}{2} \cdot \frac{1}{5}$
85. Convert $2rac{7}{8}$ into an improper fraction.	
86. Perform the operation and simplify the answer fully. $\frac{8}{5} \div \frac{5}{3}$	89. Perform the operation and simplify the answer fully. $\frac{\frac{1}{3}}{\frac{2}{3}}$

90. Perform the operation and simplify the answer fully.

$$\frac{5}{9} \div \frac{5}{8}$$

93. Evaluate the expression shown below and write your answer as a fraction or mixed number in simplest form.

$$-rac{7}{9}\cdot-rac{5}{9}$$

91. Evaluate the expression shown below and write your answer as a fraction or mixed number in simplest form.

$$6rac{1}{4} imesrac{9}{10}$$

94. Evaluate the expression shown below and write your answer as a fraction or mixed number in simplest form.

$$-5\frac{1}{10} \div \frac{1}{2}$$

92. Evaluate the expression shown below and write your answer as a fraction or mixed number in simplest form.

$$-\frac{1}{7} \div \frac{8}{3}$$

95. Evaluate the expression shown below and write your answer as a fraction or mixed number in simplest form.

$$-3rac{1}{3} imes -1rac{3}{10}$$

96. Evaluate the expression shown below and write your answer as a fraction or mixed number in simplest form.

$$\frac{8}{3}+\frac{11}{10}$$

99. Evaluate the expression shown below and write your answer as a fraction or mixed number in simplest form.

$$\frac{1}{2} + \frac{1}{14}$$

97. Evaluate the expression shown below and write your answer as a fraction or mixed number in simplest form.

$$\frac{3}{22}+\frac{5}{22}$$

100. Evaluate the expression shown below and write your answer as a fraction or mixed number in simplest form.

$$\frac{3}{10} - \frac{11}{6}$$

101. Find the measure of the missing angle.

98. Evaluate the expression shown below and write your answer as a fraction or mixed number in simplest form.

$$\frac{7}{12} + \frac{7}{15}$$

102. Find the measure of the missing angle.

103. Find the measure of the missing angles.

105. Find the measure of the missing angles.

104. Find the measure of the missing angle.

108. Given m || n, find the value of x.

111. Given m || n, find the value of x.

113. Given m || n, find the value of x.

115. Given m || n, find the value of x.

114. Given m || n, find the value of x.

117. In the figure below, $\triangle IJK$ is drawn. The line \overleftarrow{LIM} is drawn such that $\overleftarrow{LIM} \parallel \overrightarrow{JK}$.

 $m \angle JIL + x^{\circ} + m \angle KIM = ____{\circ}$ because the three angles (are complementary / are vertical angles / are all congruent / are all acute / form a straight line).

So the value of *x* must be _____.

118. In the figure below, $\triangle CDE$ is drawn. The line \overleftarrow{FCG} is drawn such that $\overleftarrow{FCG} \parallel \overline{DE}$.

angles (are complementary / are vertical angles / form a straight line / are all acute / are all congruent).

So the value of *x* must be _____.

119. In the figure below, $\triangle STU$ is drawn. The line \overrightarrow{VSW} is drawn such that $\overrightarrow{VSW} \parallel \overline{TU}$.

 $m\angle TSV + x^\circ + m\angle USW = _____\circ$ because the three angles (form a straight line / are vertical angles / are all acute / are complementary / are all congruent).

So the value of *x* must be _____.

120. In the figure below, $\triangle ABC$ is drawn. The line \overleftarrow{DAE} is drawn such that $\overleftarrow{DAE} \parallel \overline{BC}$.

 $m\angle BAD = ____\circ$ because $\angle BAD$ and $\angle ABC$ are

 $m\angle CAE = _$ ° because $\angle CAE$ and $\angle BCA$ are

 $m\angle BAD + x^{\circ} + m\angle CAE = ____{\circ}$ because the three angles (are all acute / form a straight line / are complementary / are all congruent / are vertical angles).

So the value of *x* must be _____.

121. The measures of the angles of a triangle are shown in the figure below. Solve for x.

122. The measures of the angles of a triangle are shown in the figure below. Solve for x.

123. The measures of the angles of a triangle are shown in the figure below. Solve for x.

124. The measures of the angles of a triangle are shown in the figure below. Solve for x.

126. A side of the triangle below has been extended to form an exterior angle of 126° . Find the value of x.

125. The measures of the angles of a triangle are shown in the figure below. Solve for x.

127. A side of the triangle below has been extended to form an exterior angle of 65° . Find the value of x.

128. A side of the triangle below has been extended to form an exterior angle of 130° . Find the value of x.

130. A side of the triangle below has been extended to form an exterior angle of 147°. Find the value of x.

129. A side of the triangle below has been extended to form an exterior angle of 124° . Find the value of x.

131. In \triangle STU, \overline{SU} is extended through point U to point V, $m \angle STU = (x - 3)^{\circ}, \ m \angle UST = (3x + 11)^{\circ},$ and $m \angle TUV = (6x - 18)^{\circ}$. Find $m \angle STU$.

132. In
$$\Delta KLM$$
, $m \angle K = (5x - 2)^{\circ}$,
 $m \angle L = (9x - 3)^{\circ}$, and $m \angle M = (x - 10)^{\circ}$. Find
 $m \angle FGH = (3x + 15)^{\circ}$,
 $m \angle GHI = (8x - 2)^{\circ}$, and
 $m \angle HFG = (3x + 17)^{\circ}$. What is the value of x ?
133. In ΔLMN , $m \angle L = (6x + 6)^{\circ}$,
 $m \angle M = (2x + 8)^{\circ}$, and $m \angle N = (2x + 16)^{\circ}$.
What is the value of x ?
135. In ΔUVW , $m \angle U = (8x + 18)^{\circ}$,
 $m \angle V = (4x - 5)^{\circ}$, and $m \angle W = (2x - 1)^{\circ}$. Find
 $m \angle U$.