Washington Latin Public Charter School Summer Math Problem Set for Rising Calculus Students Required of Students Enrolled in Calculus for the 2022-23 Academic Year

Name:

DIRECTIONS (please read the directions carefully):

Important Note: Questions containing **HPC** are intended for students who have previously taken Honors Pre-Calculus. Students coming from regular Pre-Calculus are welcome to attempt HPC questions but are not required to answer these questions.

- Please be prepared to have this problem set completed and ready to be handed in on the first day of classes in August.
- This problem set is required of all students who will be enrolled in Calculus in the fall of 2022.
- These practice problems serve as important preparation for a successful experience in Calculus.
- Your ability to work through these problems successfully gives us some insight into how prepared you are for a successful experience in Calculus.
- Please do all of the problems on your own and, if necessary, receive only limited assistance from other people.
- If someone else does most of the work for you, then we will not get an accurate assessment of your knowledge and abilities.
- You can complete this problem set comfortably if you work about 10 problems per day, in which case you would finish the packet in about 10 days.
- This problem set contains a total of 103 questions.
- This problem set contains three types of questions:
 - 1) Student Selected Response Section I (True or False)
 - 2) Student Selected Response Section II (Multiple Choice)
 - 3) Student Generated Free Response Section III
- You are not required to show work for the True/False and Multiple Choice questions.
- You must show your work (thought process) on the Student-Generated Free-Response Questions in order to receive credit.
- The work (steps) that you show is (are) as important as the final answer you give.
- Please write all relevant work clearly within the area provided for each question.
- Please DO NOT write work on other sheets of paper other than these pages.

Student Selected Response Section I (True or False)

- 1. **True or False:** The expression $(2x-3)^2$ simplifies to $4x^2+9$
- 2. True or False: The expression $(x-3y)^3$ simplifies to $x^3-9x^2y+27xy^2-27y^3$.
- 3. True or False: The expression -6^2 is equivalent to 36.
- 4. **True or False:** If $P(t) = \frac{100}{1+3e^{-0.4t}}$, then P(0) = 25.
- 5. True or False: $\sqrt{6} \cdot \sqrt{30} = 6\sqrt{5}$.
- 6. **True or False:** The line containing the points A(-5,7) and A(-5,-2) has equation x = -5.
- 7. True or False: $\frac{3}{-2x+1} = \frac{-3}{2x-1}$.
- 8. True or False: If $\frac{k}{t} = 3m$, then $\frac{k}{m} = 3t$
- 9. True or False: Given that x > 0 and y > 0, $\sqrt{x^2 + y^2} = x + y$

- 10. True or False: Given that x > 0, $\sqrt{18x^3} = 3x\sqrt{2x}$
- 11. **True or False:** Solving the equation $x^2 + 100 = 0$ results in the solution set $\{10i, -10i\}$
- 12. **True or False:** $\sqrt{x^2 10x + 25} = |x 5|$
- 13. True or False: $27^{\frac{2}{3}} = \sqrt[3]{27^2} = (\sqrt[3]{27})^2 = (3)^2 = 9$

14. True or False:
$$\frac{6\sqrt{10}}{2} = 3\sqrt{5}$$

- 15. True or False: Subtracting 2x-5 fro 8x+7 results in 6x-2
- 16. True or False: The two acute angles in a right triangle are always complimentary.
- 17. True or False: If the hypotenuse in a right triangle has length $\sqrt{20}$ inches and one leg has length $\sqrt{5}$ inches, then the other leg has length $\sqrt{15}$ inches.

18. **True or False:** $6-2(5+3)+40\div10\cdot2=34$

19. True or False: The solution set to the equation $\frac{5x-70}{x-14} = 5$ is all real numbers.

20. True or False: The solution set to the equation $\frac{6x-78}{x-13} = 7$ is x = 13.

21. True or False: The solution set to the equation $\frac{6}{x+2} = \frac{9}{x+3}$ is x = 0.

22. True or False: The expression $x^{2y} \cdot x^{3y}$ is equivalent to x^{5y}

23. True or False: The expression $(x^{2y})^{3y}$ is equivalent to x^{6y^2}

24. True or False: $\log_{10} 5 + \log_{10} 20 = 2$ HPC

25. True or False: $\log_9 27 = \frac{3}{2}$ HPC

- 26. True or False: The solution set to $\log x \ge 0$ is $x \ge 1$ HPC
- 27. True or False: The equation $\log_{b} a = x$ is equivalent to the equation $a = b^{x}$ HPC
- 28. True or False: $\ln(e^{2x}) = 2x$ HPC
- 29. True or False: $e^{\ln 7} = 7$ HPC

30. True or False:
$$\tan\theta = \frac{\cos\theta}{\sin\theta}$$
 HPC

Student Selected Response Section II (Multiple Choice)

- 32. Solving 3-2x > 11 results in the solution set a. x < -4 b. x > -4 c. x < 4 d. x > -7 e. x < -7

33. The expression
$$3\sqrt{48} + 2\sqrt{75}$$
 is equivalent to
a. $5\sqrt{123}$ b. $14\sqrt{6}$ c. $14\sqrt{3}$ d. $22\sqrt{6}$ e. $22\sqrt{3}$

34. The expression
$$3^{\frac{1}{2}} \cdot 3^{\frac{1}{3}}$$
 simplifies to
a. $9^{\frac{5}{6}}$ b. $3^{\frac{2}{6}}$ c. $9^{\frac{2}{5}}$ d. $9^{\frac{1}{6}}$ e. $3^{\frac{5}{6}}$

35. The rational expression
$$\frac{x^2+16}{x-4}$$
 is equivalent to
a. $x-4$ b. $x+4$ c. $4x$ d. none of these

36. The rational expression
$$\frac{x^2+5x+14}{x+2}$$
 is equivalent to
a. $x+2$ b. $x+12$ c. $6x+7$ d. $x+7$ e. none of these

37. The domain of the function
$$f(x) = \ln x$$
 is HPC
a. $x \ge 1$ b. $x > 1$ c. $x > 0$ d. $x \ge 0$ e. $(-\infty, \infty)$

38. The range of the quadratic function
$$f(x) = x^2 - 8x + 12$$
 is
a. $x \ge 12$ b. $x \ge 4$ c. $x \le -4$ d. $x \ge -4$ e. $(-\infty, \infty)$

39. If a line has an undefined slope, then the line is
a. verticalb. non-horizontal/non-verticalc. horizontald. undefined

40. Given the function $f(x) = x^2 + 4x - 5$, identify the values of x for which f(x) < 0a. -5 < x < 1 b. -1 < x < 5 c. x < -5 or x > 1 d. x < -1 or x > 5

43. The expression e^{x+y} is equivalent to

a.
$$e^{xy}$$
 b. $e^{x} \cdot e^{y}$ c. $(e^{x})^{y}$ d. $e^{x} + e^{y}$

44. The minimum value of the quadratic function $f(x)=2x^2+4x-1$ is

a.
$$y = \frac{1}{2}$$
 b. $y = 6$ c. $y = -3$ d. $y = 3$

45. Solving the compound inequality -11 < 3x - 8 < 7 results in the solution set a. -5 < x < 1 b. -1 < x < 5 c. x < -5 or x > 1 d. x < -1 or x > 5 46. An equation of the line containing the points (-1,4) and (3,7) is

a.
$$y = \frac{3}{2}x + \frac{5}{2}$$
 b. $y = \frac{3}{4}x + \frac{19}{4}$ c. $y = \frac{3}{4}x + \frac{37}{4}$ d. $y = \frac{4}{3}x + 3$

47. The solution set to
$$2\sin\theta - 1 = 0$$
 for $0 \le \theta < 2\pi$ is **HPC**
a. $\left\{\frac{\pi}{3}, \frac{5\pi}{3}\right\}$ b. $\left\{\frac{\pi}{6}, \frac{11\pi}{6}\right\}$ c. $\left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}$ d. $\left\{\frac{\pi}{3}, \frac{2\pi}{3}\right\}$

48. The solution set for the absolute value equation $|4_x+5|=2_x+1$ is **HPC** a. $\{2,-1\}$ b. $\{2\}$ c. $\{-1\}$ d. $\{-2,1\}$

49. Factoring the polynomial
$$6x^2 - 7x - 20$$
 results in
a. $(6x-5)(x+4)$ b. $(2x-5)(3x+4)$ c. $(2x+5)(3x-4)$ d. $(6x+5)(x-4)$

- 50. The graph of the exponential function $f(x) = 3(2)^x$ contains the points a. (0,0) & (1,6) b. (0,3) & (1,6) c. (0,2) & (1,5) d. (0,3) & (2,36)
- 51. $\log_3(m \cdot n^2) = \mathbf{HPC}$ a. $2\log_3 m + 2\log_3 n$ b. $\log_3 m - 2\log_3 n$ c. $2\log_3(m+n)$ d. $\log_3 m + 2\log_3 n$

52.
$$\ln x - \ln y =$$
 HPC
a. $\ln \left(\frac{x}{y}\right)$ b. $\ln(x - y)$ c. $\frac{\ln x}{\ln y}$ d. $\ln(xy)$

53. Evaluate
$$\frac{\ln 64}{\ln 4}$$
 HPC
a. 16 b. ln16 c. 3 d. 8

54.
$$\sin^2 \theta + \cos^2 \theta =$$
 HPC
a. 1 b. 0 c. $\tan^2 \theta$ d. -1

55. The rational function $f(x) = \frac{10}{x^2 - 4}$ has a horizontal asymptote with equation:

- a. y = 0
- b. x = 2
- c. y = 10
- d. x = -2 & x = 2
- e. There is no horizontal asymptote

56. The rational function $f(x) = \frac{x^2 - 9}{x^2 - 4x - 21}$ has the following domain (Note: \mathbb{R} represents the set of all real numbers):

- a. $D: \mathbb{R}, x \neq -3, x \neq 3$
- b. $D: \mathbb{R}, x \neq -7, x \neq 3$
- c. $D: \mathbb{R}, x \neq -3, x \neq 7$
- d. $D: \mathbb{R}, x \neq -21, x \neq -4$
- e. $D:\mathbb{R}$

57. The rational function $f(x) = \frac{10}{x^2 - 4}$ has a vertical asymptote(s) with equation:

- a. y = 0
- b. x = 2
- c. y = 10
- d. x = -2 & x = 2
- e. There is no horizontal asymptote

58. The rational function $f(x) = \frac{x^2 - 8x + 16}{x^2 - 16}$ has a hole at:

- a. y = -1
- b. y = 1
- c. x = -4
- d. x = 4
- e. There is no hole

59. The rational function $f(x) = \frac{6x^2 + 3x - 1}{2x^2 - 18}$ has a horizontal asymptote with equation:

- a. y = 6
- b. x = 3
- c. y = 0
- d. y = 3
- e. None of the above
- 60. The solution to $8 = 5^x$ is x =

a.
$$\frac{\ln 8}{\ln 5}$$
 b. $\frac{8}{5}$ c. $\frac{\ln 5}{\ln 8}$ d. $\frac{5}{8}$

Student Generated Free Response Section III

61. Graph the line with equation 5x - 3y = 15.

63. Write the linear equation $y = \frac{5}{3}x - 2$ in standard form ax + by = c.

64. Simplify the algebraic expression $(2xy^3)(4x^2y^3)-11x^3y^6+4x^3y^6$

65. Simplify the expression $\frac{x}{8} - \frac{x-16}{8}$

66. Simplify the expression $\frac{3}{4x} - \frac{5}{x^2}$

67. Simplify the expression
$$\frac{x^2 - 16}{x - 4} \div \frac{x^2 + 12x + 32}{x + 8}$$

68. Simplify the expression (write without negative exponents) $\frac{17x^4}{85x^{-2}}$

69. Solve $\log_4 x + \log_4 (x-6) = 2$. **HPC**

70. Rationalize the denominator in the fraction $\frac{18}{\sqrt{3}}$

71. Rationalize the denominator in the fraction $\frac{16}{3+\sqrt{5}}$ HPC

72. Circle all of the functions that are odd functions HPC

I.
$$f(x) = \frac{1}{x}$$
 II. $f(x) = \cos x$ III. $f(x) = \sin x$ IV. $f(x) = x^2 - 1$

73. For each relation, state the type of symmetry associated with its graph HPC I. xy=1 II. $y=x^2$ III. $x^3+y^3=1$ IV. $x=y^2$

74. For the parabola shown, write a quadratic equation in the form of your choice.

75. Given the two functions f(x) = 2 - x and $g(x) = x^2 + x$, evaluate g(x) - f(x)

76. Given the two functions
$$f(x) = 2 - x$$
 and $g(x) = x^2 + x$, evaluate $f(g(x))$

77. Given
$$f(x) = \frac{3}{2}x + 9$$
, determine an equation for the inverse function, $f^{-1}(x)$.

78. Shown to the right is the graph of a function y = g(x)

- a. Evaluate g(0)
- b. Write the range of the function y = g(x)
- c. State the interval on which the function is increasing
- d. State the values of x for which g(x)=0
- e. State the interval on which g(x) > 0
- f. State the maximum value of the function y = g(x)
- 79. Graph the function $f(x) = \sqrt{x+6}$

80. Graph the function $f(x) = 2^x$

81. Graph the function f(x) = -|x-3|

83. Graph the transformation T(x) = f(-x) of the function shown to the right below.

85. Line A has equation $y = \frac{-5}{3}x + 4$. Line B contains the point (5, -4) and is perpendicular to line A. Determine an equation for line B.

86. Solve the equation $28t^2 + 22t - 30 = 0$

87. Solve the equation $5m^3 - 45m = 0$

88. Use the quadratic formula to solve the equation $x^2 - 6x + 4 = 0$

89. Solve $x^3 - 2x^2 - 12x + 24 = 0$

90. Solve the system of equations $x^2 + y^2 = 25$ and $y = x^2 - 5$ algebraically. **HPC**

91. Solve
$$\sqrt{3x+7} = x+1$$
. **HPC**

92. Solve
$$\frac{2}{x-3} \ge 1$$
. HPC

93. Given x+1 is a factor of $g(x) = x^3 - 4x^2 + x + 6$, find all of the zeros of g(x). HPC

94. Given
$$g(x) = -3\cos\left[4\left(x - \frac{\pi}{12}\right)\right] + 2$$
, determine each of the following: **HPC**

- a. the amplitude is _____
- b. the vertical shift is _____
- c. the period is _____
- d. the phase shift (horizontal shift) is _____
- e. the frequency is _____

95. Give an exact value for $\sin \frac{\pi}{3}$

96. Give an exact value for $\tan \frac{\pi}{2}$

97. Give an exact value for
$$\cos \frac{\pi}{6}$$

98. Give an exact value for $\sin \frac{\pi}{4}$

99. Evaluate $\sin^{-1}(0)$

100. Evaluate $\cos^{-1}(1)$

101. Evaluate $\tan^{-1}(1)$

102. Evaluate $\sin^{-1}(1)$

103. Evaluate $\cos^{-1}(-1)$