Washington Latin Public Charter School Summer Math Problem Set for Rising Calculus Students Required of Students Enrolled in Calculus for the 2020-21 Academic Year

Name:			
r varire.			

DIRECTIONS (please read the directions carefully):

<u>Important Note:</u> Questions containing **HPC** are intended for students who have previously taken Honors Pre-Calculus. Students coming from regular Pre-Calculus are welcome to attempt HPC questions but are not required to answer these questions.

- Please be prepared to have this problem set completed and ready to be handed in on the first day of classes in August.
- This problem set is required of all students who will be enrolled in Calculus in the fall of 2019.
- These practice problems serve as important preparation for a successful experience in Calculus.
- Your ability to work through these problems successfully gives us some insight into how prepared you are for a successful experience in Calculus.
- Please do all of the problems on your own and, if necessary, receive only limited assistance from other people.
- If someone else does most of the work for you, then we will not get an accurate assessment of your knowledge and abilities.
- You can complete this problem set comfortably if you work about 10 problems per day, in which case you would finish the packet in about 10 days.
- This problem set contains a total of 103 questions.
 - This problem set contains three types of questions:
 - 1) Student Selected Response Section I (True or False)
 - 2) Student Selected Response Section II (Multiple Choice)
 - 3) Student Generated Free Response Section III
- You are not required to show work for the True/False and Multiple Choice questions.
- You must show your work (thought process) on the Student-Generated Free-Response Questions in order to receive credit.
- The work (steps) that you show is (are) as important as the final answer you give.
- Please write all relevant work clearly within the area provided for each question.
- Please DO NOT write work on other sheets of paper other than these pages.

Student Selected Response Section I (True or False)

- 1. **True or False:** The expression $(2x-3)^2$ simplifies to $4x^2+9$
- 2. True or False: The expression $(x-3y)^3$ simplifies to $x^3-9x^2y+27xy^2-27y^3$.
- 3. True or False: The expression -6^2 is equivalent to 36.
- 4. True or False: If $P(t) = \frac{100}{1+3e^{-0.4t}}$, then P(0) = 25.
- 5. True or False: $\sqrt{6} \cdot \sqrt{30} = 6\sqrt{5}$
- 6. **True or False:** The line containing the points A(-5,7) and A(-5,-2) has equation x = -5.
- 7. True or False: $\frac{3}{-2x+1} = \frac{-3}{2x-1}$.
- 8. True or False: If $\frac{k}{t} = 3m$, then $\frac{k}{m} = 3t$
- 9. **True or False:** Given that x > 0 and y > 0, $\sqrt{x^2 + y^2} = x + y$

- 10. **True or False:** Given that x > 0, $\sqrt{18x^3} = 3x\sqrt{2x}$
- 11. **True or False:** Solving the equation $x^2 + 100 = 0$ results in the solution set $\{10i, -10i\}$
- 12. **True or False:** $\sqrt{x^2 10x + 25} = |x 5|$
- 13. True or False: $27^{\frac{2}{3}} = \sqrt[3]{27^2} = (\sqrt[3]{27})^2 = (3)^2 = 9$
- 14. True or False: $\frac{6\sqrt{10}}{2} = 3\sqrt{5}$
- 15. **True or False:** Subtracting 2x-5 fro 8x+7 results in 6x-2
- 16. True or False: The two acute angles in a right triangle are always complimentary.
- 17. **True or False:** If the hypotenuse in a right triangle has length $\sqrt{20}$ inches and one leg has length $\sqrt{5}$ inches, then the other leg has length $\sqrt{15}$ inches.

18. **True or False:** $6-2(5+3)+40 \div 10 \cdot 2 = 34$

- 19. **True or False:** The solution set to the equation $\frac{5x-70}{x-14} = 5$ is all real numbers.
- 20. **True or False:** The solution set to the equation $\frac{6x-78}{x-13} = 7$ is x = 13.
- 21. **True or False:** The solution set to the equation $\frac{6}{x+2} = \frac{9}{x+3}$ is x = 0.
- 22. **True or False:** The expression $x^{2y} \cdot x^{3y}$ is equivalent to x^{5y}
- 23. True or False: The expression $(x^{2y})^{3y}$ is equivalent to x^{6y^2}
- 24. True or False: $\log_{10} 5 + \log_{10} 20 = 2$ HPC
- 25. **True or False:** $\log_{9} 27 = \frac{3}{2}$ **HPC**

- 26. True or False: The solution set to $\log x \ge 0$ is $x \ge 1$ HPC
- 27. True or False: The equation $\log_b a = x$ is equivalent to the equation $a = b^x$ HPC
- 28. True or False: $\ln(e^{2x}) = 2x$ HPC
- 29. True or False: $e^{\ln 7} = 7$ HPC
- 30. True or False: $\tan \theta = \frac{\cos \theta}{\sin \theta}$ HPC

Student Selected Response Section II (Multiple Choice)

31. The set of numbers graphed on the real number line is represented by the set:

a.
$$-1 \ge x < 6$$

b.
$$-1 < x \le 6$$

b.
$$-1 < x \le 6$$
 c. $-1 \le x \le 6$ d. $-1 < x > 6$ e. $-1 < x < 6$

$$\frac{1}{d} -1 < x > 6$$

$$e^{-1} < x < 6$$

- -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
- 32. Solving 3-2x>11 results in the solution set a. x<-4 b. x>-4 c. x<4 d. x>-7 e. x<-7

- 33. The expression $3\sqrt{48} + 2\sqrt{75}$ is equivalent to a. $5\sqrt{123}$ b. $14\sqrt{6}$ c. $14\sqrt{3}$ d. $22\sqrt{6}$ e. $22\sqrt{3}$

- 34. The expression $3^{\frac{1}{2}} \cdot 3^{\frac{1}{3}}$ simplifies to b. $3^{\frac{2}{6}}$ c. $9^{\frac{2}{5}}$ d. $9^{\frac{1}{6}}$ e. $3^{\frac{5}{6}}$

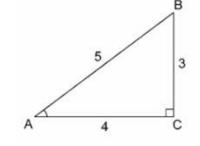
- 35. The rational expression $\frac{x^2+16}{x-4}$ is equivalent to a. x-4 b. x+4 c. 4x d. no

- d. none of these
- 36. The rational expression $\frac{x^2+5x+14}{x+2}$ is equivalent to
- b. x+12

- c. 6x+7 d. x+7 e. none of these
- 37. The domain of the function $f(x) = \ln x$ is HPC

- a. $x \ge 1$ b. x > 1 c. x > 0 d. $x \ge 0$ e. $(-\infty, \infty)$
- 38. The range of the quadratic function $f(x) = x^2 8x + 12$ is a. $x \ge 12$ b. $x \ge 4$ c. $x \le -4$ d. $x \ge -4$ e. $(-\infty, \infty)$

- 39. If a line has an undefined slope, then the line is


 - a. vertical b. non-horizontal/non-vertical c. horizontal d. undefined

40. Given the function $f(x) = x^2 + 4x - 5$, identify the values of x for which f(x) < 0

a. -5 < x < 1 b. -1 < x < 5 c. x < -5 or x > 1 d. x < -1 or x > 5

41. Refer to triangle ABC below. $\sin A =$

a. $\frac{4}{5}$ b. $\frac{3}{4}$ c. $\frac{5}{3}$ d. $\frac{5}{4}$ e. $\frac{3}{5}$

42. Refer to triangle ABC below. tan A =

a. $\frac{5}{4}$ b. $\frac{3}{5}$ c. $\frac{3}{4}$ d. $\frac{5}{3}$ e. $\frac{4}{5}$

43. The expression e^{x+y} is equivalent to

a. e^{xy} b. $e^x \cdot e^y$ c. $(e^x)^y$ d. $e^x + e^y$

44. The minimum value of the quadratic function $f(x) = 2x^2 + 4x - 1$ is

a. $y = \frac{1}{2}$ b. y = 6 c. y = -3 d. y = 3

45. Solving the compound inequality -11 < 3x - 8 < 7 results in the solution set

a. -5 < x < 1 b. -1 < x < 5 c. x < -5 or x > 1 d. x < -1 or x > 5

- 46. An equation of the line containing the points (-1,4) and (3,7) is
- a. $y = \frac{3}{2}x + \frac{5}{2}$ b. $y = \frac{3}{4}x + \frac{19}{4}$ c. $y = \frac{3}{4}x + \frac{37}{4}$ d. $y = \frac{4}{3}x + 3$
- 47. The solution set to $2\sin\theta 1 = 0$ for $0 \le \theta < 2\pi$ is **HPC**

 - a. $\left\{ \frac{\pi}{3}, \frac{5\pi}{3} \right\}$ b. $\left\{ \frac{\pi}{6}, \frac{11\pi}{6} \right\}$ c. $\left\{ \frac{\pi}{6}, \frac{5\pi}{6} \right\}$ d. $\left\{ \frac{\pi}{3}, \frac{2\pi}{3} \right\}$

- 48. The solution set for the absolute value equation |4x+5| = 2x+1 is **HPC**
 - a. $\{2,-1\}$ b. $\{2\}$ c. $\{-1\}$ d. $\{-2,1\}$

- 49. Factoring the polynomial $6x^2-7x-20$ results in

 - a. (6x-5)(x+4) b. (2x-5)(3x+4) c. (2x+5)(3x-4) d. (6x+5)(x-4)
- 50. The graph of the exponential function $f(x) = 3(2)^x$ contains the points

- a. (0,0) & (1,6) b. (0,3) & (1,6) c. (0,2) & (1,5) d. (0,3) & (2,36)
- 51. $\log_3(m \cdot n^2) = HPC$
 - a. $2\log_3 m + 2\log_3 n$ b. $\log_3 m 2\log_3 n$ c. $2\log_3 (m+n)$ d. $\log_3 m + 2\log_3 n$

52. $\ln x - \ln y = HPC$

a.
$$\ln\left(\frac{x}{y}\right)$$
 b. $\ln(x-y)$ c. $\frac{\ln x}{\ln y}$

b.
$$\ln(x-y)$$

c.
$$\frac{\ln x}{\ln y}$$

d. ln(xy)

53. Evaluate $\frac{\ln 64}{\ln 4}$ **HPC**

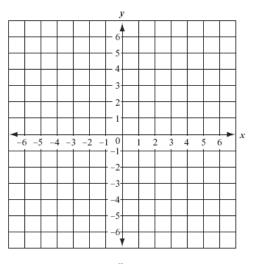
- b. ln16
- c. 3
- d. 8

54. $\sin^2\theta + \cos^2\theta = HPC$

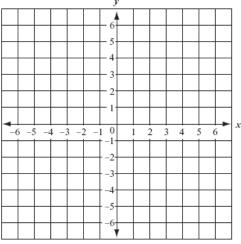
- a. 1
- b. 0
- c. $tan^2\theta$ d. -1

55. The rational function $f(x) = \frac{10}{x^2 - 4}$ has a horizontal asymptote with equation:

- a. y = 0
- b. x = 2
- c. y = 10
- d. x = -2 & x = 2
- e. There is no horizontal asymptote


56. The rational function $f(x) = \frac{x^2 - 9}{x^2 - 4x - 21}$ has the following domain (Note: \mathbb{R} represents the set of all real numbers):

- a. $D: \mathbb{R}, x \neq -3, x \neq 3$
- b. $D: \mathbb{R}, x \neq -7, x \neq 3$
- c. $D: \mathbb{R}, x \neq -3, x \neq 7$
- d. $D: \mathbb{R}, x \neq -21, x \neq -4$
- e. $D: \mathbb{R}$


- 57. The rational function $f(x) = \frac{10}{x^2 4}$ has a vertical asymptote(s) with equation:
 - a. y = 0
 - b. x = 2
 - c. y = 10
 - d. x = -2 & x = 2
 - e. There is no horizontal asymptote
- 58. The rational function $f(x) = \frac{x^2 8x + 16}{x^2 16}$ has a hole at:
 - a. y = -1
 - b. y = 1
 - c. x = -4
 - d. x = 4
 - e. There is no hole
- 59. The rational function $f(x) = \frac{6x^2 + 3x 1}{2x^2 18}$ has a horizontal asymptote with equation:
 - a. y = 6
 - b. x = 3
 - c. y = 0
 - d. y = 3
 - e. None of the above
- 60. The solution to $8 = 5^x$ is x =The solution to $8 = 5^{x}$ is x = a. $\frac{\ln 8}{\ln 5}$ b. $\frac{8}{5}$ c. $\frac{\ln 5}{\ln 8}$ d. $\frac{5}{8}$

Student Generated Free Response Section III

61. Graph the line with equation 5x - 3y = 15.

62. Graph the line with equation y = x.

- 63. Write the linear equation $y = \frac{5}{3}x 2$ in standard form ax + by = c.
- 64. Simplify the algebraic expression $(2xy^3)(4x^2y^3)-11x^3y^6+4x^3y^6$
- 65. Simplify the expression $\frac{x}{8} \frac{x-16}{8}$

- 66. Simplify the expression $\frac{3}{4x} \frac{5}{x^2}$
- 67. Simplify the expression $\frac{x^2 16}{x 4} \div \frac{x^2 + 12x + 32}{x + 8}$

- 68. Simplify the expression (write without negative exponents) $\frac{17x^4}{85x^{-2}}$
- 69. Solve $\log_4 x + \log_4 (x 6) = 2$. **HPC**

- 70. Rationalize the denominator in the fraction $\frac{18}{\sqrt{3}}$
- 71. Rationalize the denominator in the fraction $\frac{16}{3+\sqrt{5}}$ HPC

72. Circle all of the functions that are odd functions **HPC**

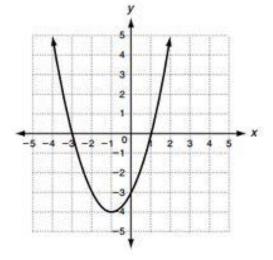
$$I. f(x) = \frac{1}{x}$$

II.
$$f(x) = \cos x$$

III.
$$f(x) = \sin x$$

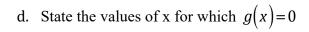
I.
$$f(x) = \frac{1}{x}$$
 II. $f(x) = \cos x$ III. $f(x) = \sin x$ IV. $f(x) = x^2 - 1$

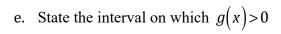
73. For each relation, state the type of symmetry associated with its graph HPC

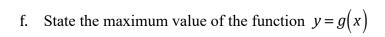

I.
$$xy = 1$$

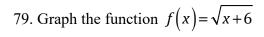
II.
$$y = x^2$$

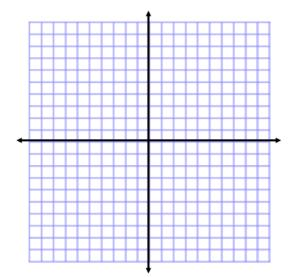
II.
$$y = x^2$$
 III. $x^3 + y^3 = 1$ IV. $x = y^2$

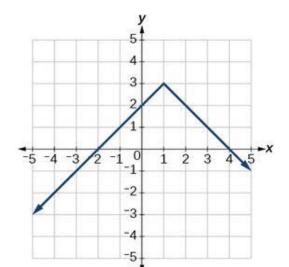

IV.
$$x = y^2$$

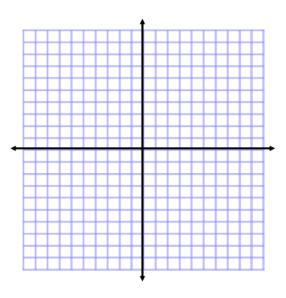

74. For the parabola shown, write a quadratic equation in the form of your choice.

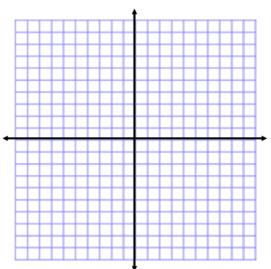


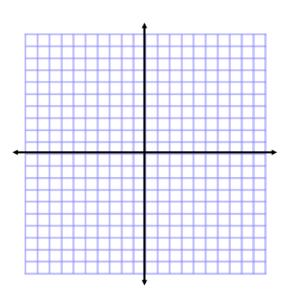

- 75. Given the two functions f(x)=2-x and $g(x)=x^2+x$, evaluate g(x)-f(x)
- 76. Given the two functions f(x)=2-x and $g(x)=x^2+x$, evaluate f(g(x))
- 77. Given $f(x) = \frac{3}{2}x + 9$, determine an equation for the inverse function, $f^{-1}(x)$.

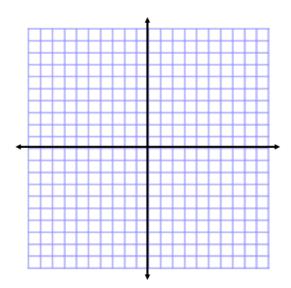

- 78. Shown to the right is the graph of a function y = g(x)
 - a. Evaluate g(0)
 - b. Write the range of the function y = g(x)
 - c. State the interval on which the function is increasing

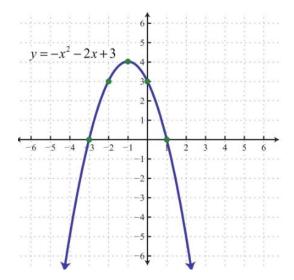




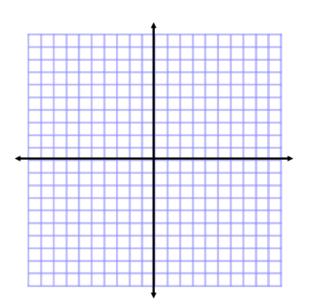



80. Graph the function $f(x) = 2^x$


81. Graph the function f(x) = -|x-3|



82. Graph the function $f(x) = \frac{1}{x+4} - 2$


83. Graph the transformation T(x) = f(-x) of the function shown to the right below.

84. Graph the piecewise function

$$f(x) = \begin{cases} x - 3 & \text{if } x > 1 \\ -2 & \text{if } x \le 1 \end{cases}$$

85. Line A has equation $y = \frac{-5}{3}x + 4$. Line B contains the point (5,-4) and is perpendicular to line A. Determine an equation for line B.

86. Solve the equation $28t^2 + 22t - 30 = 0$

87. Solve the equation $5m^3 - 45m = 0$

88. Use the quadratic formula to solve the equation $x^2 - 6x + 4 = 0$

89. Solve $x^3 - 2x^2 - 12x + 24 = 0$

90. Solve the system of equations $x^2 + y^2 = 25$ and $y = x^2 - 5$ algebraically. **HPC**

91. Solve $\sqrt{3x+7} = x+1$. **HPC**

92. Solve
$$\frac{2}{x-3} \ge 1$$
. **HPC**

93. Given x+1 is a factor of $g(x) = x^3 - 4x^2 + x + 6$, find all of the zeros of g(x). HPC

94. Given
$$g(x) = -3\cos\left[4\left(x - \frac{\pi}{12}\right)\right] + 2$$
, determine each of the following: **HPC**

- a. the amplitude is _____
- b. the vertical shift is _____
- c. the period is _____
- d. the phase shift (horizontal shift) is _____
- e. the frequency is _____

- 95. Give an exact value for $\sin \frac{\pi}{3}$
- 96. Give an exact value for $\tan \frac{\pi}{2}$
- 97. Give an exact value for $\cos \frac{\pi}{6}$
- 98. Give an exact value for $\sin \frac{\pi}{4}$
- 99. Evaluate $\sin^{-1}(0)$
- 100. Evaluate $\cos^{-1}(1)$
- 101. Evaluate $tan^{-1}(1)$
- 102. Evaluate $\sin^{-1}(1)$
- 103. Evaluate $\cos^{-1}(-1)$